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Algorithms are presented for energy- and momentum-conserving like-particle Coulomb collisions in
partially linearized (§f) particle simulations. They are developed and implemented in particular for
gyrokinetic simulation models of a strongly magnetized plasma. The collision operators include both
drag and diffusion terms, are not restricted to a single or few Fourier modes, and approximately conserve
both momentum and energy locally in space in a statistical sense. The first algorithm is a many-mode
generalization of a test-particle—plus—source algorithm previously proposed. The second is easier to im-
plement and improves upon the first significantly by not requiring many time steps for good conserva-
tion. Implementations for the case for ion-ion collisions are given and conservation properties are
demonstrated, both directly with non-self-consistent test simulation runs and indirectly with self-
consistent runs. The computational cost of particle pushing and solving for fields depends on the relative
collisionality and can result in a tripling of the total computational costs if collisions are done at each
time step, but typically will be a small fraction of the total simulation cost. It is also shown that binary-
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collision-based algorithms are unsuitable for partially linearized simulations.

PACS number(s): 52.65.+z, 52.20.Hv, 52.35.Qz, 02.70.—c

I. INTRODUCTION

Standard and partially linearized particle simulation al-
gorithms, in their basic form, are essentially collisionless
[1]. Many processes of interest in plasma physics, for
which one would like to have kinetic simulation studies,
involve collisions. Our effort is directed to implementing
a usable energy- and momentum-conserving like-particle
collision operator for partially linearized 8f gyrokinetic
particle computer codes because, for a given particle
number, such codes have been shown to have tremen-
dously reduced noise compared with standard fully non-
linear particle simulation codes [2].

Electron collisions off ions can often be modeled as
pitch-angle scattering because of the large ion-electron
mass ratio. Momentum conservation is unimportant for
these collisions, and it is straightforward to construct and
implement Monte Carlo models in which the energy is
conserved [3,4]. These simplifications are absent for
like-particle collisions, and additional steps must be taken
to guarantee that the collision model conserves energy
and momentum. Two approaches have been suggested to
do this. The first approach [5,6] is based on the form of
the linearized Landau collision operator which separates
into drag-diffusion terms that constitute a test-particle
operator and source-sink terms that enforce the conserva-
tion laws. The drag and diffusion terms are handled in
the standard way by randomly accelerating and displac-
ing the particles, while the source and sink terms change
the particle weights so as to conserve the energy and
(canonical) momentum of the particles on a spatial scale
of order a grid cell size. This approach is directly usable
in linearized [6] and partially linearized [7,2] §f simula-
tions. The second approach [8-10] is a binary scheme in
which the random accelerations and displacements of

1063-651X/94/49(1)/709(13)/$06.00 49

spatially nearby pairs of particles are correlated so as to
exactly conserve the energy and momentum of each pair.
This approach is directly applicable to standard fully
nonlinear particle simulations. While the formulations
of the collision operators are given in their respective
contexts by the authors of each approach, considerations
beyond those addressed there are involved in deciding
which approach is to be preferred in our partially linear-
ized simulations.

The binary algorithm of Refs. [8-10] is formulated for
standard fully nonlinear simulations only, but not for
partially linearized or other §f simulations. In the latter,
the previous binary collision prescriptions would result in
collisions that conserve the energy and momentum of the
zero-order or marker particles, but not of the physical
first-order (8f) energy and momentum. We have ob-
tained and investigated the correct linearization of the
binary algorithm. The resulting algorithm is impractical
for simulation purposes because the number of simulation
particles or “markers” increases rapidly as a function of
time.

In the work of Catto and Tsang [5] and of Xu and
Rosenbluth [6], the source and sink terms that are neces-
sary for energy and momentum conservation were never
implemented. Furthermore, the gyroaverages are formu-
lated in terms of Bessel functions involving the perpen-
dicular Fourier mode number. This is an inconvenient
choice for all but linear implementations. A much more
efficient procedure is to average over a finite number of
points on a circle centered at the gyrocenter [11]. This
necessitates a reformulation of source-sink terms in terms
of explicit gyroaverages, particle-grid depositions, and
field-particle interpolations. Because the deposition and
interpolation steps are computationally expensive, it is
necessary to consider the implementation in some detail
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in order to decide on its feasibility. Also, in the previous
studies [5,6], the method given for the calculation of the
sources is to use analytical expression for the test-particle
operator. The test-particle collisions only approximate
the analytic operator in the limit of many collisions. The
conservation of energy and momentum in this scheme are
therefore accurate only if the collision angle per time step
is sufficiently small and only over regions large enough
that the relative fluctuations in their evolution due to the
test-particle portion of the operator are small. These re-
quirements are unnecessarily restrictive. After our tests
of the first method showed its conservation properties to
be inadequate for some cases of practical interest, an al-
ternative method for calculating these sources was
developed. In this method, the momentum and energy
source fields are calculated at each time step after the
test-particle scattering has been applied, directly from the
momentum and energy change that was produced by the
test-particle scattering. The conservation is then accu-
rate after each time step, although still only over a spatial
scale associated with a region that contains many parti-
cles. This scheme is much simpler to implement than the
previous scheme and gives greatly improved energy and
momentum conservation. Because of the direct detailed
correlation between the test-particle velocity changes and
the source terms, this scheme is also more straightfor-
ward to test and debug.

The above discussion and the general methods given in
this paper are applicable to partially linearized §f simula-
tions, whether unmagnetized, magnetized with full dy-
namics, gyrokinetic, or drift kinetic. The specific im-
plementations for gyrokinetic simulations involve addi-
tional complications which are addressed in detail in this
paper.

We note that the collision operator very nearly triples
the running time of the simulations if the simulation is
dominated by pushing particles and if the collisions are
applied at each time step. This is a worst case; for most
applications, we anticipate that the collision operator can
be applied less often than every time step, which will
reduce the incremental cost of the collisions to a fraction
of the total cost of the simulation. The additional
memory requirements associated with the collision algo-
rithm are acceptable.

The plan of the paper is as follows. In order to provide
some context for the subsequent sections and to avoid the
need to refer to many different references, some of which
are unpublished, a brief summary of the main formulas of
partially linearized 8§ f and gyrokinetic particle simulation
algorithms is given in Sec. II. Section III presents an ar-
gument that shows that a binary algorithm is unsuitable
for partially linearized simulations. The test-particle plus
source algorithms are discussed in general terms in Sec.
IV. The multimode generalization of the algorithm based
on the work of Catto and Tsang [5] and Xu and Rosen-
bluth [6] for collisions in a gyrokinetic simulation is given
in Sec. V. This algorithm consists of prescriptions for
both the drag and diffusion of the particle trajectories
and the equation of evolution of the particle weights for
the perturbed distribution function. The improved, more
direct collision algorithm is described in Sec. VI. The im-

plementations of the collision algorithms are outlined in
Sec. VII, and the results of both direct tests of the conser-
vation laws and of self-consistent test cases are presented.

II. SUMMARY OF PARTIALLY LINEARIZED
AND GYROKINETIC ALGORITHMS

Here the partially linearized gyrokinetic particle simu-
lation model is summarized for the simple case of a mag-
netized electrostatic plasma in a slab magnetic field. The
partially linearized gyrokinetic algorithm [7] is a method
for solving the small-amplitude nonlinear gyrokinetic
equations [12,13]. These equations are a reduction of the
Vlasov-Poisson (Vlasov-Maxwell in the electromagnetic
case) equations based on the well-known gyrokinetic or-
dering,
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where p,=v7,/Qu Qu=q,B/m ¢ V7=V To/Mmy; 44,
m,, and T, are, respectively, the charge, mass, and tem-
perature for species a; c is the speed of light; B is the
magnetic field strength; ¢ is the electrostatic potential;
is the frequency of the perturbation; L is a characteristic
perpendicular equilibrium scale length of the system; and
L, is the characteristic parallel wavelength of the pertur-
bation.

The electrostatic gyrokinetic Vlasov equation for a
plasma in a uniform magnetic field is [12,13]
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where k= —d InF,, /dx, F), is an equilibrium Maxwelli-
an distribution function,

=#4fdp¢ R+p), (1b)

R=x—p, p=v, xb, P is a unit vector in the direction of
p, X is the particle position, v, is the perpendicular veloci-
ty, 8f(R,u,vy,1) is the gyroaveraged perturbed distribu-
tion function, w=v? /2, and C(F) is a collision operator.
The electrostatic potential ¢ is given by the gyrokinetic
Poisson equation which, for a single ion species i, is

Vi _¢_<g =—4me(n'—n*), (1c)
D
where
~ 1 _
=5 po(x— (1d)
$x)=-— [dudpdix—p),
x)= [dpdodpdf(x—p,p,v;,0) (le)

and 7=T,/T;, p,=c,/Q;, ¢,=V'T,/m;, k, is the per-

pendicular wave number, Ap =1/T, /4mnge? is the elec-
tron Debye length, and n,, is the background ion number
density.
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In a practical gyrokinetic particle codes, the angle in-
tegrations of Eqs. (1b) and (le) are replaced by averages
over a finite number (often four) points on a ring, com-
bined with a charge-deposition or field-interpolation cal-
culations involving spatial weighting functions [11].

The term on the right-hand side of Eq. (1a) containing
k represents the radial EXB advection from an equilibri-
um with gradients in the radial direction. In the presence
of density and temperature gradients, for example,
Ko=Kp{1+n(v2/20},—2)}, where n=(d InT,/d Inn,)
and «, represents the density gradient. Here 9/0x
represents a derivative in the direction of the equilibrium
gradients and 9/dy represents a derivative in the direc-
tion perpendicular to the magnetic field and the equilibri-
um gradients.

The term “partially linearized” denotes the fact that
there is no parallel acceleration nonlinearity in Eq. (la).
This fact is used in the partially linearized particle simu-
lation method by recognizing that the characteristics of
Eq. (1a) preserve any spatially uniform particle distribu-
tion. We therefore use a solution of the form

8f = Jw;(N8(R,—R;)8(v, —v,;)8u—p;), @)
J

where R; and v|; evolve according to the characteristic
equations of Eq. (1a). In the absence of collisions, if the
simulation particles j are loaded as a uniform Maxwellian
then the source terms on the right-hand side of Eq. (1a)
are correctly taken into account if w; evolves according
to

. __ 99~ 3
A S

The partially linearized method is a special case of the
more general “8f method,” which allows for different
choices of particle loading and for the inclusion of non-
linearities such as the parallel acceleration nonlinearity
that become important when 8f /F,, <<1 no longer holds
[2]. A generalization of the partially linearized method
to include the parallel nonlinearity has also been given by
Parker and Lee [14].

The remaining details of the basic particle simulation
method are reviewed, for example, by Birdsall and Lang-
don [1], while the details specific to the interpolation,
deposition and field solvers used in gyrokinetic simula-
tions are reviewed by Lee [11].

It is the aim of this paper to obtain a momentum- and
energy-conserving like-particle Monte Carlo collision
operator that can be used in Eq. (la). We use the fact

that because §f /F,, << 1, only terms to linear order in §F
J

need to be kept in the collision operator. Similar
methods could be used to guarantee momentum and en-
ergy conservation in collision operators for nonlinear §f
models where this does not hold. The main difference is
that then the collision frequency will have to become a
functional of the local distribution.

III. BINARY ALGORITHM

We first present some general aspects of binary col-
lision algorithms that suggest why these may be unsuited
for partially linearized particle simulations. Consider a
collision between two simulation particles with initial ve-
locities v and v, and final velocities v’ and v] in a three-
dimensional simulation. There are six quantities (the ve-
locity components of two particles) that can change and
four constraints (the total energy and three components
of the total momentum). Thus there are two free parame-
ters that can change, often chosen as 86, the angle be-
tween the final and initial relative velocities, and ¢, some
azimuthal angle (e.g., the angle between the plane con-
taining the initial and final relative velocities and the line
formed by the intersection between the plane perpendic-
ular to the initial relative velocity and some fixed plane).
Consider a partially linearized code binary collision in
which there are two zero-order (“marker”) particles be-
fore and after the collision. There are now two additional
free parameters that can change, the particle weights.
Detailed conservation would demand the conservation of
the total zero- and first-order momentum and energy, and
the first-order particle number, i.e., a total of nine con-
straints. Clearly, therefore, detailed conservation, analo-
gous to that for binary collisions in a standard code, is
impossible.

It is interesting to see how conservation laws are
satisfied for the linearized Boltzmann collision operator,
which one would expect to describe binary collisions with
sufficient accuracy for partially linearized simulations.
The full Boltzmann collision operator can be written as
(15]

CpLf1V)= [ dvidv'dvi{W(v,v,|V,v)f (v)f (V)

—WW,vilv,v)f(V)f (v},
(3)

where W(v',vi|v,v,)dvdv,dv'dv] is the transition rate
for collisions in which particles with initial velocities v
and v, have final velocities v’ and v}, respectively, and
the arguments x and ¢, upon which Cg[f] and f also de-
pend, have been suppressed. This can be linearized to
give

8Cp[f1v)= [ dvidv'dvi{W(v,vi[V, V)81 (V) fo(v})+ fo(v)8f (V)]
— W, Vv, v I8 f(V)fo(v))+ fo(W8f (v} .

We now use the ansatz that results in the standard-loading partially linearized algorithm f,=3,8(v—v,;),
8f =3 ,w;(t)8(v—v;), where w;(t) are the particle weights, and note that a particle does not collide with itself, to ob-
tain

8C3[f1IVI=3 3 (w;+w){ [dv,W(v,v,lv;,v))=8(v—v,) [dvdviWw (v vilv,v,)} . @)
i j(#i)
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Now consider a gas consisting of two particles only, and
formally integrate over a time interval [#,,#,+7] such
that
[k

f,O dt W(v,%|v,,v,) =8(v—v})8(V—v}) , (5)
where v] and v} are two velocities that can be obtained
from v, and v, by a standard energy- and momentum-
conserving collision. The result is

tyt7
[ drscylf1v)

fo
=(w, tw,){d(v—v})—8v—v,)

+8(v—v))—8(v—v,)} . (6a)

This result clearly conserves particle number, energy and
momentum because its form is that of a number multi-
plied by an expression that represents a standard col-
lision. It can be generalized to collisions between many
pairs of particles by summing over colliding pairs. Add-
ing the distribution before the collision, we obtain

8f (vytg+7)=(w, +w,)[8(v—v])+8(v—vj)]
—w,8(v—v)—w;8(v—v,) . (6b)

The key feature of Eq. (6b) is that markers both at the
new and old velocities are required to represent the final
distribution function. The additional free parameters
made available by the additional marker particles are
necessary to permit the collisions both to conserve num-
ber, energy, and momentum and to permit a prescription
of the collision rate. Although the marker at one of the
old velocities could be eliminated by adding some multi-
ple of Eq. (6), this would result in an unpredictable col-
lision rate. For a fixed collision rate, the number of simu-
lation particles must increase exponentially as a function
of time. This makes the binary algorithm totally unus-
able for partially linearized simulations.

IV. TEST-PARTICLE
PLUS SOURCE/SINK ALGORITHMS

For the reason stated in the preceding section, we de-
velop collision operators based on the test-particle plus
source approach. Here these algorithms are discussed in
general terms.

The Landau collision operator can be written in the
form

CH=CIfIf ,

where C[f]g denotes a linear operator, which is a linear
functional of f, acting on g. In addition, C has the form
of a drag-diffusion operator. The functional dependence
of the drag and diffusion coefficients in C[f] on f makes
these coefficients difficult to compute when f evolves.
This difficulty is greatly reduced in partially linearized
codes, because in the small-§f ordering used there, the
operator can be linearized. The linearization is valid pro-
vided v <<wL /A, where v is the collision frequency, o is
the characteristic timescale of the fluctuations under
study, L is the radial equilibrium length scale, and A is

the radial scale of the fluctuations. As an example, for
electrostatic drift-wave problems, wL /A is of order the
ion gyrofrequency. Carrying out the linearization about
a Maxwellian F),, we have [5,6]

S(Cf1f)=C[Fy16f +C[8fFy
=Crp(8f)+p(8f)Fy - )

Here Cpp is a test-particle drag-diffusion operator in ve-
locity space, with drag and diffusion coefficients that do
not vary with time and position, p(8f)=(C[8f1Fy)/Fy,
and p(§f)F), is a source that guarantees local energy and
momentum conservation. The source p(8f) can be ex-
panded in functions orthogonal with respect to the (one-,
two-, or three-dimensional) weighting function F,,. Cat-
to and Tsang [5] and Xu and Rosenbluth [6] note that
number conservation is automatic for Crp and that to ob-
tain momentum and energy conservation, only the first
two terms of p(8f) need to be kept. Thus we can take

p(3f)=v-p(x)+Ax)(? /207 — 1), (8a)
where
p(x)=——— [dvvCrp(8f), (8b)
novr
1
AMx)=— dvv?Crp(8f) . (8¢)
x 3n0v%f v Creldf

The two possible approaches mentioned in the Intro-
duction amount to particular choices of Cp in Egs. (8).
In the approach of Catto and Tsang [5] and Xu and
Rosenbluth [6], which results in what will here be called
“algorithm I,” the continuous analytical velocity-space
drag-diffusion operator expression for Cyp is used. In a
particle code, the test-particle collisions are actually im-
plemented with a Monte Carlo model in which the parti-
cle velocities are changed stochastically. The stochastic
velocity kicks approximate the continuous analytical
operator only in the limit of many kicks. Thus the con-
servation of energy and momentum are accurate only in
the limit of many kicks. In our approach, which will be
termed “algorithm II,” and which is developed in detail
for gyrokinetic simulations in Sec. VI, the actual velocity
kicks that cause the velocity-space drag and diffusion in
the Monte Carlo model are used directly to calculate the
sources. We can formally integrate Egs. (8) over the time
interval during which the collision operator is applied
once in the particle code and define A.0f to be the
change in 81 after one application of the collision opera-
tor and A1pdf to be that portion due to the test-particle
scattering (kicks applied to the velocities of the marker
particles). We then have

A8f=Acrpdf +ApFy, , (9a)
where
Ap(x,v)=v-Ap(x)+AA(X)(v?/20F—3) (9b)

and
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Ap(x)=——— [dvvAcsdf , (9c)
novr

AMx)=— - [dvviAcrds . (9d)
3n0

In this approach the sources are correlated with the ve-
locity kicks and conservation of energy and momentum is
imposed for each collision time step.

]

V. ALGORITHM 1 BASED ON THE APPROACH
OF XU AND ROSENBLUTH

Gyroaveraging in the first of the test-particle plus
source schemes, which gives a multimode version of the
operator derived by Catto and Tsang [5] and Xu and
Rosenbluth [6], is discussed in this section.

The linearized Landau collision operator is given by
Eq. (7) with Cpp and p(8f) given by [6]

_ 9 2 1 d 4 1 3 3
CTP(Sf)_—av_f v, U 8f+5—év_f(vlv 8f)+55v—”(v“lv of)
d 1 9 2 0 3 1 3 |1 3
+ + o (v 28f )+ = (v 08 ——= |—=—(G? 10
aU" VSIIUIISf 2 aU" (‘V"U f) avi (V"_LU f) v, a¢ [ v, 3 ( f)] (10
[
and gyroaveraging the Cyp(g) term, classical transport con-
tributions arise from the 3/dR terms in Egs. (13). The
p(8f)= v- [dvvFsf result is
noUT d 2 d
5 (02 3 <CTp(g))=5?(vslv g)+ 5 —(vy8)
215 == | [dvw F—3G—H)sf L I
3 1)2 2 2
T 1 (vte)+ L2 (v
(11 2 a(vf)z ! 2 6v|2| I
2
where v, v;,, v}, v, F, G, and H are functions of v, and ? (v 3g)
v, defined in Ref. [6]. Equation (10) has been expressed dv{dy,
as the divergence of the collisional velocity-space flux. If 1
8f is a Maxwellian with zero mean velocity and the same +—p'Vi 21 +Glg|,
temperature as that for which the collisional drag and 0] vy

diffusion coefficients is evaluated, then each of the groups
of terms in the square brackets in Eq. (10) sums to zero.
First, §f is expressed in terms of the gyroaveraged distri-
bution function g, accurate to first order in the gyrokinet-
ic smallness parameter [13], via

6f=h-—;1,—FM¢, (12a)
where
h =g+—g;FM$ , (12b)

and ¢ is the gyroaveraged potential. The (¢ /T)F,¢ term
in Eq. (12a) does not contribute to either term in the col-
lision operator. Next, the spatial position is expressed in
terms of the lowest-order gyrocenter position, R=x—p,
where p= =bXv/Q. This requires the following transfor-
mation formulas for the partial derivatives:

d ) p 9

— | == - ==, 13
w?l |, dw?|g 202 R (13a)
i) G ~ 3

39 |, an (pXb) 3R (13b)

Finally, the collision operator is gyroaveraged, i.e., aver-
aged with respect to ¢ with R held fixed. The various
contributions will be considered separately. In

where 3/dv? is now evaluated at fixed R. This is a test-
particle drag-diffusion operator acting on g, which is the
quantity that is evaluated along the particle characteris-
tics. This piece can therefore be modeled using standard
Monte Carlo techniques [6,16]. The gyroaverage of
Crp(Fyqd/T) represents the effect of collisions on the
portion of the distribution function that is due to the po-
larization drift. Inserting F),¢ into Eq. (10) and noting
that (a) the components of the collisional phase-space
flux, of which Crp(F,,) is a divergence, vanish and (b)
8¢_>/8v,| =0 gives

1 3%
Crp(Fy$)=Fy | —vv Bi DA v4a(—v%2—
1
+ G _‘é
— 4
f ag? (14)

where 3/0v? and 3/d¢ are evaluated at constant x.
Again, transforming the spatial coordinate from x to R,
using Eqgs. (13) and gyroaveraging gives

- 3 , 1 ¢
(Crp(Fyd))=F,, | —v v2—— +—vp?
e(Fyd M Vsi Uf 2"1 a(uf)l
4
G
Ly (15)
8vt vf Vié
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where 3/dv? is again now evaluated at fixed R. The
method for evaluating each of these terms is as follows.
For the first term, we have

34 _ 1
Wl 20,0 27

L $dgp-v,6(R+p) .

This can be evaluated approximately by replacing the in-
tegral by a sum over a finite number of values of ¢. Inter-
polation is used to obtain V,¢(R+p) from the values of
V4 given on the grid (as for the standard electric field
calculation). In order to 51m/phfy the second term, note
that pp+(p><b)(p><b) I—bb, bXp=dp/dg, and in-
tegrate by parts to obtain

_82&_:_ — 1 _Q. 2v2$
vy 43 2 Ju? . 4vl K

Because the Laplacian commutes with the gyroaveraging,
V%4 can be evaluated by gyroaveraging over values of
V2¢ obtained by interpolation from values known on the
grid, having evaluated V24 on the grid using grid opera-
tions. This also takes care of the last term in Eq. (15).
The result is a gyrocenter quantity that contributes a
source at the gyrocenter position. We note that our Eq.
(15) in the single-mode limit does not agree with the cor-
responding expressions in Eq. (7) of Ref. [6].

The contribution of Eq. (11) can be calculated by not-
ing that

(P R)=v {p(h))+ v pi(h))
+w?/vi—2){Ah)) (16a)
where
py(h;x) fd3v'v"Fh x—p'), (16b)
puhix)=—= [d*v Fh(x—p') , (16¢)
novy
Mh;x)= d*'(v'*F'—3G'—H')h(x—p’)
3n0v%f v X
(16d)

are x-space fields.

The quantities in Egs. (16b)-(16d) are computed by
noting that h is a gyroaveraged quantity and so can be
represented by adding the polarization contribution
(g/T)Fy¢(x—p’) to the particle weights. They are then
multiplied by the respective functions of velocity to form
the quantities in the integrands in Egs. (16b)-(16d), dis-
tributed over a finite number of values of p’ on a ring,
and deposited to the grid. The resulting grid quantities
are then interpolated onto a finite number of points on
the ring around each gyrocenter, multiplied by the ap-
propriate functions of v and v, in Eq. (16a), evaluated at
the values for the respective gyrocenter, and summed to

produce a source that is a gyrocenter quantity.
We note that a formal procedure for gyroaveraging the

collision operator has been given in terms of Lie trans-
forms by Brizard [17]. To the order with which we are

interested, Brizard’s results amount to the above pro-
cedure.

VI. COLLISION ALGORITHM II:
A MORE DIRECT APPROACH

In the collision algorithm detailed in the preceding sec-
tion, the prescription for {p(8f)) and { Crp(Fyqd/T))
should be accurate in the limit that the particle distribu-
tion is adequately resolved with a sufficient number of
marker particles and after a sufficient number of col-
lisions, each of sufficiently small collision angle, to ensure
good statistics.

In practice, as will be seen in the test cases given in
Sec. VII, this approach has two problems. First, for
strong collisionality, the requirement of sufficiently many
collisions can necessitate many collisions per gyrokinetic
time step. Relevant test cases will be shown in which one
collision per gyrokinetic time step gives poor conserva-
tion. Second, very good grid resolution may be necessary
to ensure that the source term of Eq. (15) results in
reasonable energy and momentum conservation. This is
because these terms are not in a form that is explicitly en-
ergy and momentum conserving when combined with
Crp(Fy) and discretized. The test-particle portion,
given by Eq. (15), contains second derivatives of ¢, while
the polarization response portion of Egs. (16) is in in-
tegral form. Finally, the form. derivation, and implemen-
tation of Eq. (15) are sufficiently complicated to make it
difficult to verify that the final implementation is correct.
These difficulties motivated the development of the
second, more direct implementation of the collision algo-
rithm. The details of implementing this operator in a
gyrokinetic simulation are presented in this section. This
operator involves fewer computations and requires only
that there be sufficient numbers of marker particles to
resolve the velocity distribution. As already stated, the
drag and diffusion of the marker particles are produced
in the same way as for the first algorithm. However, the
calculations of the {p(8/)) and { Cp(Fyqd/T)) source
terms in the second algorithm differ.

The (p(8f)) momentum- and energy-conserving
source term can be calculated from the appropriately
gyroaveraged and weighted deflections in the momenta
Av; and changes in the kinetic energy A(v?) of the mark-
er partlcles due to collisions. To be spemﬁc, the change
in the particle weights for momentum and energy conser-
vation Aw ™ is given directly by

Aw™s=—(v;-Ap) —{[(v}/v})—3]AL) , (17)

where

Ap=(1/nov}) 3(w; +q¢'/T) SAv,; W(R;+p;p; —%,) ,
i j

(18a)
AA=(1/3ngv}) S(w; +q¢/T) S A W(R;+p;p;—X,)
i J

(18b)

are collected on the spatial grid from the marker particle
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deflections due to collisions at the gyro-orbit points.
Here i is the gyrocenter index, j is the gyro-orbit point in-
dex which in our codes runs from 1 to 4, ¢' is the
gyroaveraged potential seen by the ith gyrocenter, Wis a
spatial weighting function of finite size that specifies the
algorithm by which particle data are deposited onto the
simulation grid, R; and p; are, respectively, the position
and gyroradius of the ith gyrocenter, p ; is the unit vector
of the jth orbit point, and x, is the grid point position.
The right-hand side of Eq. (17) is similarly evaluated as a
four-point gyroaverage by interpolating from the values
of Ap and AA on the grid to the particle position R+p.
The fact that the marker particle deflections Av; are not
saved at the four angles around the gyro-orbit, but are
immediately used to increment the marker particle veloc-
ities, the perpendicular gyrocenter positions, and the
momentum and energy change fields, is exploited to allow
the order of the four gyroangles to be scrambled random-
ly in computing the gyroaverages to destroy any spurious
anisotropy.

The change in the particle weight AwP®! due to the
collisionally induced change  deriving  from
g{Cyp(Fy$)) /T can be directly calculated from the
change in ¢ calculated before and after the collisional
deflection of the marker particles. This is much less
cumbersome than the procedure presented in Sec. III.
Consider the perturbed ion velocity distribution function
after a collision as a sum of gyrocenter and polarization
pieces, 8f,=g, +q($,—@)Fy /T, which is related to the
corresponding quantities before the collision by the equa-
tion

8f,=8,1tq($,—@)Fy /T+ASS, , (19)

where g, and g, are the gyrocenter velocity distribution
J

functions before and after the collision, and Adf, is the
collisional change due to {p(8f)) and the collisional
deflections of the marker particles. Thus the contribu-
tion to g, —g; from just the collisional change in ¢ is de-
duced from

g8,—81=—q(d,— &) Fy /T+ASS, .
Hence the contribution just from the change in ¢ is

Awp'=—q(d,—,)/T . (20)

The quantity ¢,—@, represents the change in the
gyroaveraged potential seen by a particle due to the col-
lisional change in its gyroorbit, in the absence of any
change in the potential itself. Note that because each col-
lision event does not change the particle position, there is
no ¢,—¢, term. Also, F, is represented by the marker
particle distribution, which is preserved by the collisions.
Because the sign of Eq. (20) is somewhat counterintui-
tive and it is not obvious that this result is equivalent to
Crp(Fyd) as used in algorithm I, a direct derivation is
given here. The &f realization of Fy,é can be written as

Fyd— SHX)8(X—X;),

where X =(R,u,v,) is a five-vector consisting of the gyro-
center phase-space coordinates and X; is its value for par-
ticle i. The test-particle scattering operator, by
definition, changes the phase space coordinates without
changing the particle weight. The change due to a col-
lision is therefore

ACp(Fyd)= So(X;)[8(X —(X; +AX;))—8(X —X,)] .

This can be written as

Actp(Fyd)= SHX; +AX;)8(X — (X, +AX,))— T(X)8(X —X,)+ S[S(X;)— (X, +AX,)]8(X — (X, +AX,))

i i

=¢(X) [S8(X —(X; +AX;))— X —X;) |+ S[o(X,)— (X, +AX;)]8(X —(X; +AX,)) . 1)

The first term in square brackets on the right-hand side
of Eq. (21) contains the difference between two realiza-
tions of F), and is therefore neglected. This gives the re-
sult

Actp(Fyd)— S[$(X;)—d(X; +AX;)]8(X —(X;+AX;)) ,
which is equivalent to Eq. (20).

The computation of ¢ just involves a four-point
gyroaverage at R+p. Overall, the second collision algo-

rithm is simpler and more direct, and should perform
better than the first algorithm presented in Sec. III.

VII. CODE IMPLEMENTATION AND TEST CASES

A. Collision algorithm I

The implementation of the drag-diffusion collision
operator breaks naturally into three parts: (Crp(g)),

[

(Crp(Fyqd/T)), and {p(8f)). The first part { C1p(g))
is the gyroaveraged drag-diffusion operator acting on the
test-particle velocity components evaluated along the
characteristics. The second and third parts contribute
source and sink terms to the equation of evolution for the
particle weight used in representing g, i.e.,

g=Jw;(1)8(v—v;)8(R—R;), (22)

where Fy, =3 ,;8(v—v;)8(R—R;).
tion for the particle weight w;(¢) is

The evolution equa-

%wi(t)=Fg'(CTp(FMq$/T))+(p(8f)), (23)

where Egs. (15) and (16) are used for the right-hand side
of Eq. (23) and dw; /dt is calculated along the particle tra-
jectories as influenced by { Crp(g)).
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1. Drag-diffusion of particle trajectories

The drag-diffusion scattering of test particles using
Monte Carlo methods is well established [6,16]. The im-
plementation of Rognlien and Cutler provides a prescrip-
tion for small-angle scattering of a three-dimensional ve-
locity vector due to collisions with a fixed Maxwellian
background. This method is readily adapted to a four-
point gyroaveraged collision operator as follows. Four
gyrophase angles (N7/2, N=0,1,2,3) are selected with
which x=R+p and v=(v,,v,,v,) are calculated from v,
and v,. The drag-diffusion operator described in detail in
Ref. [16] is then applied to v four times per time step at
the four gyroangles using a time step of Az/4 in the
drag-diffusion coefficients. From the scattered velocity
vector, scattered values of v, and v, are reconstructed
and the gyrocenter position must be modified to reflect
the scattering of v,, viz., AR=AvXb/Q. The drag-
diffusion computation is a serial operation on the particle
list and has been vectorized easily. The error function
and its derivative used repeatedly in the collision opera-
tor are evaluated using a standard rational approxima-
tion, tabulated in arrays, and linearly interpolated when
needed.

2. Polarization contribution to collision operator

The first term on the right-hand side of Eq. (23) is
associated with the polarization contribution to the
collision operator. Its evaluation based on Eq. (15) and
the equations that immediately follow is straight-
forward. The increment to the particle weight
Aw; =F3;'{ C1p(Fpqd/T)) At is conveniently evaluated
when the particle trajectories are advanced using the ap-
proximations

sailz —LE (x+pX)—E, (x—pX)
1

+E,(x+py)—E,(x—pJ)] (24)
and
Vo~ 1[Vk d(x+pR)+ V% d(x—p%)
+Vii$(x+p)+ Vi 6(x—pF)] . (25)

The Laplacian of the potential in Eq. (25) is calculated on
the spatial grid, stored when Poisson’s equation is solved,
and then interpolated to the particle positions at the four
gyrophase positions when the force assignment is com-
puted. The electric field components in Eq. (24) also are
calculated and stored when the gyroaveraged force as-
signment is computed. The computation of the contribu-
tion to Eq. (23) from Eq. (15) is a serial computation over
the particle list and has been vectorized easily.

3. (p(8f)) contribution to collision operator

The expression for {p(8f)) and the discussion follow-
ing Eq. (16) provide a prescription for calculating the
remaining contribution to the right-hand side of Eq. (23).
These source/sink terms involve the evaluation of an in-

tegral over the perturbed part of the distribution function
in Egs. (11) and (16). The perpendicular velocities v,
needed in Eq. (16¢c) are calculated from v, and the four
gyrophase angles at the positions R+p. The error func-
tion and its derivative required in Eq. (16) are functions
of the particle energy and are evaluated by linear interpo-
lation on precomputed values stored in an array. The
moments p,, p;, and A are computed like the charge den-
sity, i.e., as sums over the particles, averaged over the
four gyrophase-angle positions, and linearly interpolated
onto the spatial grid. We have taken care to make the
moment calculations efficient by vectorizing them using
the method of Heron and Adam [18]. This is the most
computationally intensive component of the collision al-
gorithm. The calculation of the {p(8f)) contribution to
the collisions is completed by evaluating the right-hand
side of Eq. (16a) by linearly interpolating the moments
back to the four gyrophase-angle positions and averaging.
This last step is best done when the gyroaveraged forces
are calculated. We note that in addition to the increased
number of computations involved with the depositions of
four more moments of the ion distribution function, there
is the increased memory requirement of the additional
four grid arrays for the moments and several computer
vector-length arrays for the Heron and Adam vectoriza-
tion.

B. Collision algorithm II

As described in Sec. IV, the second algorithm uses the
same marker-particle drag-diffusion collision operator as
the first algorithm. The order of the four gyroangles is
randomly scrambled. While collisionally deflecting the
marker-particle trajectories in the second algorithm, the
momentum deflections and energy changes are used to
collect the four additional moments of the ion distribu-
tion function needed for the {p(§f)) calculation. The
change in the gyrocenter weights to account for the
change due to {Crp(Fyqd/T)) are calculated directly
from the changes in ¢ due to the collisional changes in
the marker particles. It has been found to be preferable
to use the velocities before the collision instead of those
after the collision in the calculation of Aw/°™ in Eq. (17).

This introduces order V/ viiAt /N, relative errors into the
source term, where At is the time step and N, is the num-
ber of particles in the structure under consideration.
These average to zero over many time steps and are not
problematic. The use of the precollision velocities avoids
secular second-order correlations that arise if the veloci-
ties after the collisions are used in the conserving sources
of Eqgs. (8). These correlations result in a secular change
in the energy of order vjAf /N, per collision operation,
where N, is the number of particles per grid cell, and
can be problematic over many time steps.

The costliest part of the collision calculation on a vec-
tor computer is the accumulation of the four additional
moments of the ion distribution function determined
from the collisional momentum and energy changes.
This is vectorized following the Heron and Adam method
[18]. To improve efficiency, on time steps when there are
no collisions only the charge density is collected using the
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minimum amount of grid arrays, index arrays, and other
auxiliary arrays required by the Heron-Adam method.

C. Test cases and code timing

It is important to be able to diagnose any numerical
implementation of the above collision operator in order
to verify that the collision rates are correct and that the
particle number, energy, and momentum are indeed con-
served. Several tests are possible.

The collision rates are inherent to the test-particle por-
tion of the operator. The implementation of this portion
by Rognlien and Cutler [16] has previously been tested
and shown to give the correct rates of relaxation of the
parallel momentum, the energy, and the correct diffusion
coefficient for the gyrocenters. In order to verify that
this operator has been imported correctly, tests of the re-
laxation of temperature anisotropy and of the perpendic-
ular diffusion of the marker particles are presented in Sec.
VIIC 1.

The source terms in Egs. (14) and (16) are constructed
so as to conserve the first-order (§f) particle number,
momentum, and energy statistically on a spatial scale of
order the grid cell size. The conservation becomes exact
only in the limit where (i) the grid cell size is much small-
er than the spatial scale of the region in which the conser-
vation is being measured, (ii) there are infinitely many
particles in this region, (iii) the particles are distributed in
velocity space so that they accurately sample the
Maxwellian, and (iv) the test-particle operator is
sufficiently accurate that it drives the simulation particle
distribution towards a Maxwellian with the correct
specified temperature T; =m;v%. In the case of collision
algorithm I, many time steps are also required. Both
direct non-self-consistent and indirect self-consistent tests
have been carried out and are described below.

1. Tests of the drag and diffusion of the marker particles

To test the drag diffusion of the particle trajectories in
our collision operator, we simulated the collisional relax-
ation of a weak temperature anisotropy with the self-
consistent electric field suppressed. Temperature relaxa-
tion of a weak anisotropy obeys the equation

AT()=[T;,(0)—T;,(0)Jexp( —aviit) , (26)

where vi=4mg*n,InA/m?v3 is the basic collision fre-
quency, v;=%v/T;/m; is the ion thermal speed, and
a=0.23 [19]. Figure 1 presents the temporal relaxation
of a temperature anisotropy from a simulation. There is
a significant reduction in the fluctuations with four times
as many particles, and good agreement with Eq. (26) is
obtained. Good accuracy is obtained in this and the oth-
er test cases for viAt <0.025-0.05.

The classical collisional diffusion of test particles
across the magnetic field is used as a second test for the
drag-diffusion operator. The self-consistent electric field
is again suppressed. A set of test particles is loaded ini-
tially at a common location in x. The spatial diffusion in
space should be described by
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FIG. 1. Temporal relaxation of a weak temperature anisotro-
py due to collisions. The theoretical expectation is shown with
a dashed line. Simulations with (a) 16 particles per cell and (b)
64 particles per cell.
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where 7;=vi/37'2. A simulation result for this is
shown in Fig. 2. The agreement with Eq. (27) improves
as the number of collision events grows in time until the
particle displacements begin to approach the system di-
mension.

2. Momentum and energy conservation

The simplest and most direct tests of the first-order
conservation can be made as follows. A large number of
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FIG. 2. Spatial diffusion coefficient, ratio of the variance in
the displacement in x to the elapsed time, as a function of time.
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marker particles are loaded from a uniform Maxwellian
distribution. A direction in phase space is chosen, de-
pending on which conservation law is to be tested. The
weights of the particles are initialized to be equal to some
constant in a narrow interval about a single value of the
chosen phase-space coordinate, and zero outside this in-
terval. This initialization is independent of the other
phase-space directions. If it were not for the source-sink
terms, the zero-order drag and diffusion acting on those
particles would cause the value of the first-order moment
associated with the chosen phase-space direction to
evolve. When the source terms are kept, however, the
evolution of the moment should be small. The other
first-order moments, whose zero-order counterparts do
not evolve, should also not evolve. Such tests have been
carried out for the energy, the parallel momentum, and
the canonical perpendicular momenta, which to lowest
order in the gyroradius correspond to the gyrocenter po-
sitions.

Results from these tests are shown in Figs. 3-6. Fig-
ures 3 and 4 show, respectively for algorithms I and II,
time histories of the first-order energy and momentum,
with (solid curves) and without (dashed curves) the con-
serving source terms. The parameters used were
N, =4096 particles, grid size A, =A, =p, number of grid
cells NXXNy=64X64, voAt=0.011, where At is the
time step. Collisions were done every time step. The par-
ticle weights were initially set to zero except for those
with parallel velocities 1.4vr <v; <1.6vy, which have
particle weights set initially to 0.01. The electrostatic po-
tential was set to zero for these cases. The energy and
parallel momentum are both initially larger than what
they would be if those particles with nonzero weights and
those with zero weights both had the same isotropic
Maxwellian distribution as the marker particles. The
test-particle collisions (i.e., collision operator without the
source terms) therefore cause the energy and parallel
momentum to decrease, as shown by the dashed curves.
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FIG. 3. Time histories of the first-order energy and momen-
tum in arbitrary units, with (solid curves) and without (dashed
curves) the conserving source terms for algorithm I. The pa-
rameters and initialization are described in the text. The hor-
izontal axis is the number of time steps. The total time is
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FIG. 4. Same as Fig. 4, but for algorithm II.

The differences in the dashed curves between Figs. 3 and
4 are due to the fact that the order of application of the
test-particle collisions with respect to the gyrophase is
different in the two cases. With the source terms kept,
both quantities should be conserved. By comparing Figs.
3 and 4 it is seen that algorithm II results in greatly im-
proved energy and momentum conservation. In particu-
lar, algorithm II significantly reduces energy and momen-
tum fluctuations at all time scales, including those shorter
than the collision time. This property is particularly ad-
vantageous for resolving waves or structures with short
spatial scales which, because of poorer particle statistics,
would have large energy and momentum fluctuations if
algorithm I were used.

The test for perpendicular momentum conservation in
a gyrokinetic code is that to first order in the gyroradius,
there should be no diffusion of the first-order gyrocenter
density. This can be seen by expanding the gyrocenter
density to first order in the gyroradius,

Ny (X)= fd,udv‘,g(x,y,vi)
'*fdudvu[g(rp,u»v”)+p-V1g(X~p,u,vm]
=n(x)+Vl-Q_ls>< fd,udv“vlg(x—p,p,v“) .

(28)

For this test, we take $=0. The integral in the last form
in Eq. (28) is the perpendicular momentum field. Thus if
the density and momentum are conserved locally by the
collision operator, then to first order in p, so is n,(x).
To test this conservation law, the particles are loaded
with initial weights that have a dependence on x that has
a (Gaussian) bell shape with adjustable width. The evolu-
tion of n, is then compared with and without the con-
serving source terms. The results are shown in Fig. 5.
Each plot shows 41 curves of ion gyrocenter density at
different times, separated by vjAt=0.56. The initial
loading of the weights was of the form
w; =eexp[ —(x; —x,.)?/A?], where x; is the radial posi-
tion of the gyrocenter, and with €=0.01, x. =8p,, and
A=3p,. In Fig. 5(b), the first curve is among the highest,

and the gyrocenter test-particle diffusion causes the peak
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FIG. 5. Curve of ion gyrocenter density at different times,
separated by viAt=0.56, for algorithm II. The weights are ini-
tialized with a Gaussian profile in x, and ¢ is set to zero. Other
details are given in the text. The curves in (a) include the con-
serving source terms, while those in (b) do not. The units for
the vertical scale are arbitrary, but are the same for (a) and (b).

gyrocenter density to decrease, in the absence of the con-
serving source terms. In Fig. 5(a), in which the source
terms were kept, the gyrocenter diffusion is greatly re-
duced, indicating good conservation of perpendicular
momentum. Because the nondiffusion result of Eq. (28) is
accurate only to first order in p, some residual gyrocenter
diffusion is expected in Fig. 5(a).

Finally, a test of the conservation of the perpendicular
momentum for the polarization density terms is shown
for algorithm II in Fig. 6. This test is suggested by mak-
ing the replacement g—g+qF,#/T in Eq. (28). The
weights are initialized to zero, but an electrostatic poten-
tial of the form e¢/T,=eexp[—(x—x,)*/A?], with
€=0.01, x,=8p;, and A=3p,, is imposed for all time.
The other parameters were as for Fig. 5, except that the
time between successive curves and the total time have
been doubled. Plotted are curves of the gyrocenter densi-
ty including the g¢ /T term in the weights. The adiabatic
response —q@¢/T is not included, because its average
does not evolve for a fixed ¢. Again, Fig. 6(a) shows the
gyrocenter density with the conserving source terms in-
cluded, while Fig. 6(b) shows the result without the
source terms. The effect of AwP® in Eq. (20) in this case
is simply to maintain the sum w;+q¢/T constant, so
that this test is almost equivalent to that of Fig. 5.

Similar results were obtained with identical parameters

x/p x/p

FIG. 6. Curves of ion gyrocenter density at different times,
separated by v§Ar=1.12, for algorithm II. The weights are ini-
tialized to be zero. The potential is fixed with a Gaussian profile
in x. Other details are given in the text. The curves in (a) in-
clude the conserving source terms, while those in (b) do not.

(including particle number) for algorithm 1. It is worth
remarking again, however, that the complexity of the po-
larization terms in algorithm I allows many more possi-
bilities for errors in th derivation and implementation of
the various terms involved than for algorithm II. A sin-
gle test of the type discussed here is therefore less
sufficient as a test of the correctness of the implementa-
tion of algorithm I than of algorithm II.

3. Ion-temperature-gradient instability with collisions

As a test of the collision algorithm in the presence of
self-consistent fields we have simulated the slab ion-
temperature-gradient (ITG) instability [20] in the long-
wavelength limit and in the presence of ion-ion collisions.
The instability threshold value of 7; in the limit k p; <<1
is reduced by collisions from 7;=2 in the collisionless
limit to a value of 17;=2% in the limit that the parallel
wavelength is long compared to the ion collisional mean
free path [21,22]. If ;, the ratio of the density to tem-
perature scale lengths, is fixed at a value close to its value
at marginal stability, then the growth rates of given
modes are mostly expected to increase with increasing
collisionality. These trends can be viewed as being due to
a lowering of the effective ratio of specific heats as the
compression passes from being one dimensional in the
collisionless limit to three dimensional in the collisional
limit. Furthermore, the increase in growth rate is expect-
ed to depend critically on the conservation of parallel
momentum. In the absence of the conservation of paral-
lel momentum, the collisions would induce a parallel
drag. This would make the ion response in the collisional
limit dissipative rather than inertial and result in de-
creased growth rates, although the marginally stable
value of 7; would not necessarily be altered by the drag.
Thus the ITG mode near marginal stability provides a
test of the conservation laws, especially the conservation
of parallel momentum.

Hassam et al. [21] and Chang and Callen [22] have ob-
tained expressions for the effect of ion-ion collisions on
the threshold and the growth rates for intermediate col-
lisionality, in addition to the values of these in the limits
of weak and strong collisionality. They find that the
threshold 7, decreases monotonically as a function of col-
lision frequency. Hassam et al. [21] used a number-,
momentum-, and energy-conserving Krook-model col-
lison operator, while Chang and Callen used a collison
operator consisting of a Lorentz operator plus a
momentum-conserving source term. Their analyses can
be used to obtain a dispersion relation for ITG modes in
the limit of weak collisionality, i.e., long mean-free path
compared to the parallel wavelength.

Chang and Callen obtain a dispersion relation for the
ITG instability, Eq. (55) of their paper [22], for k p; << 1
and w <w,;, where 0,; =cT;bXVIn(n,)-k,/(eB). This
dispersion relation depends on a number of coefficients
which in turn depend on the plasma dispersion function
evaluated as a function of the mode frequency and ion
collision frequency. If we expand the plasma dispersion
function to first order in its argument, valid when the
complex mode frequency and collision frequency are
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small compared to the product of the parallel wave num-
ber and the ion thermal speed (adiabatic limit), then Eq.
(55) of Chang and Callen is reduced to

w=~i[0.732(n; —2)k jvy; +0.186v(] . (29)

This corrects an algebraic error in Eq. (61) of Chang and
Callen [22]. Note that in the collisionless limit, a kinetic
analysis would give 0 =i0.62(n; —2)k vy; [23].

In Fig. 7, we display solutions of the linear dispersion
relation for 7;=2.5, and data from two-dimensional
gyrokinetic §f simulations of the ITG instability using al-
gorithm II. The growth rates plotted have been normal-
ized to the collisionless growth rate to focus on the
influence of collisions. Note that the collisionless growth
rate observed in simulation was 0.25k vy, while kinetic
theory gives 0.31kvy; omitting gyrofadius effects and
corrections from finite differencing. The simulation re-
sults were obtained using 4160 particles, with a box size
L, XL,=32p;X32p;, and with p;/L,=0.05. In the
simulations we restricted the Fourier representation to
only a single spatial mode with k, =0, k,p,=0.2, and
k,/k,=0.01. Note that kp/w,;=0.2 here, and
®/,; has been assumed small in obtaining Eq. (29). We
undertook simulations of the ITG instability with and
without the inclusion of the {p(8/)) source terms in the
collision operator. We note in Fig. 7 that the agreement
with the corrected Chang-Callen theory is fairly good
only when the {p(8f)) source terms are included. For
the small value of k,p; =0.2 used, the polarization effects
embodied in ( CFy,q¢/T) were not observed to have any
significant influence on the growth rates. For these simu-
lations the second collision algorithm was used.

An additional test of the collision algorithm and the
Chang-Callen theory was provided by simulating a sys-
tem with 7,=1.66, p,/L,=0.1, and the same single-
mode restriction as used in the preceding. With
vo/k vy; =10, the value of 1;=1.66 is predicted by the
Chang-Callen theory to exceed the threshold value
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FIG. 7. Growth rates normalized to the collisionless growth
rate as a function of relative collisionality v{/k jvr: for ion tem-
perature gradient instability with 7,=2.5, k p,=0.2, and
k;/k;=0.01. The dashed line is the prediction of Chang and
Callen’s theory as given in Eq. (29).

1;=1.1; and we observe a weakly growing ITG instabili-
ty in simulations with a frequency whose real part is
Re(w/kvg;)=~—0.5. With no collisions and otherwise
the same parameters, no ITG instability is observed (re-
call that the collisionless threshold is 1,=2 at k,p,=0).
Both these results and those displayed in Fig. 7 are in
general agreement with the Chang-Callen theory. We
were able to obtain similar results using algorithm I, pro-
vided that the number of particles was increased by a fac-
tor of 4.
4. Code timings

The calculation of ion-ion collisions in a §f gyrokinetic
simulation using the algorithm presented here is compu-
tationally intensive. The code has been fully vectorized
for use on vector supercomputers to improve its
efficiency. In the limit that particle pushing dominates
the computations, the running time with collisions per-
formed at every time step is approximately tripled. This
represents a worst case. For a typical application, e.g.,
the simulation of drift-type instabilities of interest in
tokamak research, the ion-ion collision frequency is much
less than the diamagnetic drift frequency in most situa-
tions of interest. For these applications, the collision
operator can be invoked less often than every time step.
For example, if the ions are collided every eighth time
step, the collisions add 20% to the running time of the
simulation. The most expensive part of the additional
calculations required for the §f collision algorithm is the
accumulation of four additional particle moments. To
ensure good optimization on a vector supercomputer, us-
ing a prescription for vectorizing all the accumulations
such as is given by Heron and Adam [18] is very impor-
tant. Furthermore, one must be careful to modify the
Heron-Adam procedure to accumulate only the charge
density (for electrostatic simulations) and not to manipu-
late those arrays associated with the additional moments
on timesteps when collisions are not done.

Finally, we note that because the implementation of a
number-, energy-, and momentum-conserving Krook
operator, such as the one used in the analytical calcula-
tions of Hassam et al. [21], would require accumulation
of the density, momentum, and energy moments needed
for the conservation terms, the computational expense of
such an operator would be comparable to that of the
operators implemented here. This is despite the physics
that is lost by such a Krook model due to the replace-
ment of the test-particle drag-diffusion operator by a
damping term.
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